Testing probabilistic models of choice using column generation
نویسندگان
چکیده
منابع مشابه
Probabilistic Choice Models
This chapter examines different models commonly used to model probabilistic choice, such as eg the choice of one type of transportation from among many choices available to the consumer. Section 1 discusses derivation and limitations of conditional logit models. Section 2 discusses probit models and Section 3 discusses the nested logit (generalized extreme value models), which address some of t...
متن کاملProbabilistic Choice Models for Product Pricing using Reservation Prices
We consider revenue management models for pricing a product line with several customer segments, working under the assumption that every customer’s product choice is determined entirely by their reservation price. We model the customer choice behavior by several probabilistic choice models and formulate the problems as mixed-integer programming problems. We study special properties of these for...
متن کاملOn the choice of explicit stabilizing terms in column generation
Column generation algorithms are instrumental in many areas of applied optimization, where linear programs with an enormous number of columns need to be solved. Although succesfully employed in many applications, these approaches suffer from well-known instability issues that somewhat limit their efficiency. Building on the theory developed for nondifferentiable optimization algorithms, a large...
متن کاملConstrained Clustering Using Column Generation
In recent years, it has been realized that many problems in data mining can be seen as pure optimisation problems. In this work, we investigate the problem of constraint-based clustering from an optimisation point of view. The use of constraints in clustering is a recent development and allows to encode prior beliefs about desirable clusters. This paper proposes a new solution for minimum-sum-o...
متن کاملCoreference Clustering using Column Generation
In this paper we describe a novel way of generating an optimal clustering for coreference resolution. Where usually heuristics are used to generate a document-level clustering, based on the output of local pairwise classifiers, we propose a method that calculates an exact solution. We cast the clustering problem as an Integer Linear Programming (ILP) problem, and solve this by using a column ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Operations Research
سال: 2018
ISSN: 0305-0548
DOI: 10.1016/j.cor.2018.03.001